Aneurysm Education

What is a cerebral aneurysm?

A cerebral aneurysm (also known as an intracranial or intracerebral aneurysm) is a weak or thin spot on a blood vessel in the brain that balloons out and fills with blood. The bulging aneurysm can put pressure on a nerve or surrounding brain tissue. It may also leak or rupture, spilling blood into the surrounding tissue (called a hemorrhage). Some cerebral aneurysms, particularly those that are very small, do not bleed or cause other problems. Cerebral aneurysms can occur anywhere in the brain, but most are located along a loop of arteries that run between the underside of the brain and the base of the skull. What causes a cerebral aneurysm?

Most cerebral aneurysms are congenital, resulting from an inborn abnormality in an artery wall. Cerebral aneurysms are also more common in people with certain genetic diseases, such as connective tissue disorders and polycystic kidney disease, and certain circulatory disorders, such as arteriovenous malformations.[1]

Other causes include trauma or injury to the head, high blood pressure, infection, tumors, atherosclerosis (a blood vessel disease in which fats build up on the inside of artery walls) and other diseases of the vascular system, cigarette smoking, and drug abuse. Some investigators have speculated that oral contraceptives may increase the risk of developing aneurysms.

Aneurysms that result from an infection in the arterial wall are called mycotic aneurysms. Cancer-related aneurysms are often associated with primary or metastatic tumors of the head and neck. Drug abuse, particularly the habitual use of cocaine, can inflame blood vessels and lead to the development of brain aneurysms.

[1] A congenital malformation in which a snarled tangle of arteries and veins in the brain disrupts blood flow.

How are aneurysms classified?

There are three types of cerebral aneurysm. A saccular aneurysm is a rounded or pouch-like sac of blood that is attached by a neck or stem to an artery or a branch of a blood vessel. Also known as a berry aneurysm (because it resembles a berry hanging from a vine), this most common form of cerebral aneurysm is typically found on arteries at the base of the brain. Saccular aneurysms occur most often in adults. A lateral aneurysm appears as a bulge on one wall of the blood vessel, while a fusiform aneurysm is formed by the widening along all walls of the vessel.

Aneurysms are also classified by size. Small aneurysms are less than 11 millimeters in diameter (about the size of a standard pencil eraser), larger aneurysms are 11-25 millimeters (about the width of a dime), and giant aneurysms are greater than 25 millimeters in diameter (more than the width of a quarter).


Who is at risk?

Brain aneurysms can occur in anyone, at any age. They are more common in adults than in children and slightly more common in women than in men. People with certain inherited disorders are also at higher risk.
All cerebral aneurysms have the potential to rupture and cause bleeding within the brain. The incidence of reported ruptured aneurysm is about 10 in every 100,000 persons per year (about 27,000 patients per year in the U.S. ), most commonly in people between ages 30 and 60 years. Possible risk factors for rupture include hypertension, alcohol abuse, drug abuse (particularly cocaine), and smoking. In addition, the condition and size of the aneurysm affects the risk of rupture.


What are the dangers?

Aneurysms may burst and bleed into the brain, causing serious complications including hemorrhagic stroke, permanent nerve damage, or death. Once it has burst, the aneurysm may burst again and rebleed into the brain, and additional aneurysms may also occur. More commonly, rupture may cause a subarachnoid hemorrhage—bleeding into the space between the skull bone and the brain. A delayed but serious complication of subarachnoid hemorrhage is hydrocephalus, in which the excessive buildup of cerebrospinal fluid in the skull dilates fluid pathways called ventricles that can swell and press on the brain tissue. Another delayed postrupture complication is vasospasm, in which other blood vessels in the brain contract and limit blood flow to vital areas of the brain. This reduced blood flow can cause stroke or tissue damage.


What are the symptoms?

Most cerebral aneurysms do not show symptoms until they either become very large or burst. Small, unchanging aneurysms generally will not produce symptoms, whereas a larger aneurysm that is steadily growing may press on tissues and nerves. Symptoms may include pain above and behind the eye; numbness, weakness, or paralysis on one side of the face; dilated pupils; and vision changes. When an aneurysm hemorrhages, an individual may experience a sudden and extremely severe headache, double vision, nausea, vomiting, stiff neck, and/or loss of consciousness. Patients usually describe the headache as “the worst headache of my life” and it is generally different in severity and intensity from other headaches patients may experience. “Sentinel” or warning headaches may result from an aneurysm that leaks for days to weeks prior to rupture. Only a minority of patients have a sentinel headache prior to aneurysm rupture.
Other signs that a cerebral aneurysm has burst include nausea and vomiting associated with a severe headache, a drooping eyelid, sensitivity to light, and change in mental status or level of awareness. Some individuals may have seizures. Individuals may lose consciousness briefly or go into prolonged coma. People experiencing this “worst headache,” especially when it is combined with any other symptoms, should seek immediate medical attention.

How are cerebral aneurysms diagnosed?

Most cerebral aneurysms go unnoticed until they rupture or are detected by brain imaging that may have been obtained for another condition. Several diagnostic methods are available to provide information about the aneurysm and the best form of treatment. The tests are usually obtained after a subarachnoid hemorrhage, to confirm the diagnosis of an aneurysm. Angiography is a dye test used to analyze the arteries or veins. An intracerebral angiogram can detect the degree of narrowing or obstruction of an artery or blood vessel in the brain, head, or neck, and can identify changes in an artery or vein such as a weak spot like an aneurysm. It is used to diagnose stroke and to precisely determine the location, size, and shape of a brain tumor, aneurysm, or blood vessel that has bled. This test is usually performed in a hospital angiography suite. Following the injection of a local anesthetic, a flexible catheter is inserted into an artery and threaded through the body to the affected artery. A small amount of contrast dye (one that is highlighted on x-rays) is released into the bloodstream and allowed to travel into the head and neck. A series of x-rays is taken and changes, if present, are noted.

Computed tomography (CT) of the head is a fast, painless, noninvasive diagnostic tool that can reveal the presence of a cerebral aneurysm and determine, for those aneurysms that have burst, if blood has leaked into the brain. This is often the first diagnostic procedure ordered by a physician following suspected rupture. X-rays of the head are processed by a computer as two-dimensional cross-sectional images, or “slices,” of the brain and skull. Occasionally a contrast dye is injected into the bloodstream prior to scanning. This process, called CT angiography, produces sharper, more detailed images of blood flow in the brain arteries.

Magnetic resonance imaging (MRI) uses computer-generated radio waves and a powerful magnetic field to produce detailed images of the brain and other body structures. Magnetic resonance angiography (MRA) produces more detailed images of blood vessels. The images may be seen as either three-dimensional pictures or two-dimensional cross-slices of the brain and vessels. These painless, noninvasive procedures can show the size and shape of an unruptured aneurysm and can detect bleeding in the brain.

Cerebrospinal fluid analysis may be ordered if a ruptured aneurysm is suspected. Following application of a local anesthetic, a small amount of this fluid (which protects the brain and spinal cord) is removed from the subarachnoid space—located between the spinal cord and the membranes that surround it—by surgical needle and tested to detect any bleeding or brain hemorrhage. In patients with suspected subarachnoid hemorrhage, this procedure is usually done in a hospital.

How are cerebral aneurysms treated?

Not all cerebral aneurysms burst. Some patients with very small aneurysms may be monitored to detect any growth or onset of symptoms and to ensure aggressive treatment of coexisting medical problems and risk factors. Each case is unique, and considerations for treating an unruptured aneurysm include the type, size, and location of the aneurysm; risk of rupture; patient’s age, health, and personal and family medical history; and risk of treatment.

Two surgical options are available for treating cerebral aneurysms, both of which carry some risk to the patient (such as possible damage to other blood vessels, the potential for aneurysm recurrence and rebleeding, and the risk of post-operative stroke).

Microvascular clipping involves cutting off the flow of blood to the aneurysm. Under anesthesia, a section of the skull is removed and the aneurysm is located. The neurosurgeon uses a microscope to isolate the blood vessel that feeds the aneurysm and places a small, metal, clothespin-like clip on the aneurysm’s neck, halting its blood supply. The clip remains in the patient and prevents the risk of future bleeding. The piece of the skull is then replaced and the scalp is closed. Clipping has been shown to be highly effective, depending on the location, shape, and size of the aneurysm. In general, aneurysms that are completely clipped surgically do not return.

A related procedure is an occlusion, in which the surgeon clamps off (occludes) the entire artery that leads to the aneurysm. This procedure is often performed when the aneurysm has damaged the artery. An occlusion is sometimes accompanied by a bypass, in which a small blood vessel is surgically grafted to the brain artery, rerouting the flow of blood away from the section of the damaged artery.

Endovascular embolization is an alternative to surgery. Once the patient has been anesthetized, the doctor inserts a hollow plastic tube (a catheter) into an artery (usually in the groin) and threads it, using angiography, through the body to the site of the aneurysm. Using a guide wire, detachable coils (spirals of platinum wire) or small latex balloons are passed through the catheter and released into the aneurysm. The coils or balloons fill the aneurysm, block it from circulation, and cause the blood to clot, which effectively destroys the aneurysm. The procedure may need to be performed more than once during the patient’s lifetime. At Capital Health patients can also be treated using the Onyx® Liquid Embolic System (Onyx® HD-500). Onyx is an artificial material used to block blood flow into aneurysms. The material is used to fill the aneurysm space, or pocket, and prevent the aneurysm from rupturing or increasing in size. The glue is delivered to the aneurysm site through a catheter which is placed into the artery in the groin and is then threaded through the vascular system to the brain and the aneurysm’s opening. The glue is injected into the aneurysm where it hardens and blocks the flow of blood into the aneurysm, preventing growth or rupture. Onyx® Liquid Embolic System (Onyx® HD-500) is used in the treatment of intracranial, saccular, sidewall aneurysms that present with a wide neck or with a dome-to-neck ratio that are not amenable to treatment with surgical clipping.


--------------------------------------------------------------------------------

The information provided on these educational pages is for informational purposes only. The content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a qualified health provider with any questions you may have regarding a medical condition. And, if experiencing a medical emergency call 9-1-1.
.
Back to top